
XOTcl − Tutorial
1.0

Gustaf Neumann and Uwe Zdun

XOTcl − Tutorial

1

XOTcl − Tutorial − Index
Version: 1.0.1

Introduction

Language Overview♦
Introductory Overview Example: Soccer Club♦

•

Object and Class System•
Basic Functionalities

Objects

Data on objects◊
Methods on Objects◊
Information on Objects◊

♦

Classes

Creating Classes and deriving Instances◊
Methods in Classes◊
Information on Classes◊
Inheritance◊
Destruction of Classes◊
Method Chaining◊

♦

Dynamic Class and Superclass Relationships♦
Meta−Classes♦
Create, Destroy, and Recreate Scheme♦

•

Message Interception Techniques

Filters♦
Mixin Classes♦
Callstack Information♦

•

Class Nesting and Dynamic Object Aggregations•
Assertions•
Additional Functionalities

Abstract Classes♦
Parameter♦
Automatic Name Creation♦
Meta−Data♦

•

References•

XOTcl − Tutorial

2

Introduction

Language Overview

XOTcl [Neumann and Zdun 2000a] is an extension to the object−oriented scripting language OTcl [Wetherall
and Lindblad 1995] which itself extends Tcl [Ousterhout 1990] (Tool Command Language) with
object−orientation. XOTcl is a value−added replacement for OTcl and does not require OTcl to compile. It
runs in its own shell, called xotclsh. This shell takes the commands (similar to tclsh) one by one from a
file or the console. It interprets them using the Tcl interpreter. For that reason all Tcl−commands remain
available (and are also applicable on the extension constructs).

A central property of Tcl is, that it uses strings solely for the representation of data. Internally it uses an
dynamic type system with automatic conversion (which enables efficient type handling). For that reason all
components (e.g. written in C) once integrated in Tcl automatically fit together and the components can be
reused in unpredicted situations without change. The evolving component frameworks have proven to provide
a high degree of code reuse, a rapid application development, and an ease of use. The application developer
may concentrate on the application task solely, rather than investing efforts in fitting components together.
Therefore, in certain applications scripting languages like Tcl are very useful for a fast and high−quality
development of software (see [Ousterhout 1998] for more details).

Tcl is equipped with appropriate functionalities for the easy gluing of components, like dynamic typing,
dynamic extensibility, and read/write introspection. OTcl is an object−oriented extension to Tcl, which
encourages a Tcl−like programming style and is composed of language constructs with properties similar to
Tcl. It offers an object−orientation with encapsulation of data and operation without protection mechanisms
and single and multiple inheritance. Furthermore it enables to change the relationships dynamically, offers
read/write introspection, has a three level class system based on meta−classes and offers method chaining.
These abilities are integrated in XOTcl with only slight changes to OTcl visible to the programmer.

The XOTcl extension aims at complexity and adaptability issues that may occur in context of large
(object−oriented) software structures and in the context of component glueing. In particular we added the
following support:

Filters as a means of abstractions over method invocations to implement large program structures,
like design patterns.

•

Mixin Classes, as a means to give an object or a classes' instances access to several different
supplemental classes, which may be changed dynamically.

•

Dynamic Object Aggregations, to provide dynamic aggregations through nested namespaces.•
Nested Classes, to reduce the interference of independently developed program structures.•
Assertions, to reduce the interface and the reliability problems caused by dynamic typing and,
therefore, to ease the combination of components.

•

Meta−data and Automatic Documentation, to enhance self−documentation of objects and classes.•

XOTcl − Tutorial

 Language Overview 3

Figure 1: Language Extensions of XOTcl

Introductory Overview Example: Soccer Club

To give you an impression of the language before we go into the details of the language construct, we present
in this section a simple, introductory example. It shall demonstrate the basic language constructs on the
example of a soccer club (the full code can be found in the xotcl/src/scripts/soccerClub.xotcl
file. All the characters in this example are fictitious, and any resemblance to actual persons, living or
deceased, is coincidental.

In XOTcl we do not have to provide a file description as a comment, but we can use the @ object, which is
used generally to provide any kind of information, metadata, and documentation on a running program. Here,
we just give a file description. Then the makeDoc.xotcl tool can automatically document the program file
for us.

 @ @File {
 description {
 This is a simple introductory example for the language XOTcl.
 It demonstrates the basic language constructs on the example of
 a soccer club.
 }
 }

XOTcl − Tutorial

 Introductory Overview Example: Soccer Club 4

All things and entities in XOTcl are objects, a special kind of objects are classes. These define common
properties for other objects. For a soccer club, we firstly require a common class for all kinds of members.

Common to all members is that they have a name. Common properties defined across all instances of a class
are called 'parameter' in XOTcl. In this example the instance variable name will be initialized by default with
an empty string.

 Class ClubMember −parameter {{name ""}}

A special club member is a Player. Derived classes can be build with inheritance (specified through
superclass). Players may have a playerRole (defaults to NONE).

 Class Player −superclass ClubMember −parameter {{playerRole NONE}}

Other club member types are trainers, player−trainers, and presidents:

 Class Trainer −superclass ClubMember
 Class President −superclass ClubMember

The PlayerTrainer uses multiple inheritances by being both a player and a trainer:

 Class PlayerTrainer −superclass {Player Trainer}

Now we define the SoccerTeam class:

 Class SoccerTeam −parameter {name location type}

We may add a player. This is done by a method. Instance methods are in XOTcl defined with instproc. All
club members are aggregated in the team (denoted by :: namespace syntax).

 SoccerTeam instproc newPlayer args {
 # we use a unique autoname for the object to prevent name
 # collisions, like ::player01, ::player02, ...
 eval Player [self]::[my autoname player%02d] $args
 }

A player can be transfered to another team. The player object does not change internally (e.g. the playerRole
stays the same). Therefore we move it to the destination team.

 SoccerTeam instproc transferPlayer {playername destinationTeam} {
 # We use the aggregation introspection option children in order
 # to get all club members
 foreach player [my info children] {
 # But we only remove matching playernames of type "Player". We do
 # not want to remove another club member type who has the same
 # name.
 if {[$player istype Player] &[$player name] == $playername} {
 # We simply 'move' the player object to the destination team.
 # Again we use a unique autoname in the new scope
 $player move [set destinationTeam]::[$destinationTeam autoname player%02d]
 }
 }
 }

Finally we define two convenience to print the members/players to the stdout with puts.

XOTcl − Tutorial

 Introductory Overview Example: Soccer Club 5

 SoccerTeam instproc printMembers {} {
 puts "Members of [my name]:"
 foreach m [my info children] {puts " [$m name]"}
 }
 SoccerTeam instproc printPlayers {} {
 puts "Players of [my name]:"
 foreach m [my info children] {
 if {[$m istype Player]} {puts " [$m name]"}
 }
 }

Now let us build to example soccer team objects.

 SoccerTeam chelsea −name "Chelsea FC" −location "Chelsea"
 SoccerTeam bayernMunich −name "F.C. Bayern München" −location "Munich"

With addPlayer we can create new aggregated player objects

Let us start some years in the past, when "Franz Beckenbauer" was still a player.

 set fb [bayernMunich newPlayer −name "Franz Beckenbauer" \
 −playerRole PLAYER]

playerRole may not take any value. It may either be NONE, PLAYER, or GOALY ... such rules may be
given as assertions (here: an instinvar gives an invariant covering all instances of a class). In XOTcl the rules
are syntactically identical to if statements:

 Player instinvar {
 {[my playerRole] == "NONE" ||
 [my playerRole] == "PLAYER" ||
 [my playerRole] == "GOALY"}
 }

If we break the invariant and turn assertions checking on, we should get an error message:

 $fb check all
 if {[catch {$fb set playerRole SINGER} errMsg]} {
 puts "CATCHED EXCEPTION: playerRole has either to be NONE, PLAYER, or TRAINER"
 # turn assertion checking off again and reset to PLAYER
 $fb check {}
 $fb set playerRole PLAYER
 }

But soccer players may play quite different, orthogonal roles. E.g. Franz Beckenbauer was also a singer (a
remarkably bad one). However, we can not simply add such orthogonal, extrinsic extensions with multiple
inheritance or delegation. Otherwise we would have either to build a lot of unnecessary helper classes, like
PlayerSinger, PlayerTrainerSinger, etc., or we would have to build such helper objects. This either leads to an
unwanted combinatorial explosion of class or object number

Here we can use a per−object mixin, which is a language construct that expresses that a class is used as a role
or as an extrinsic extension to an object.

First we just define the Singer class.

 Class Singer
 Singer instproc sing text {

XOTcl − Tutorial

 Introductory Overview Example: Soccer Club 6

 puts "[my name] sings: $text, lala."
 }

Now we register this class as a per−object mixin on the player object:

 $fb mixin Singer

And now Franz Beckenbauer is able to sing:

 $fb sing "lali"

But Franz Beckenbauer has already retired. When a player retires, we have an intrinsic change of the
classification. He *is* not a player anymore. But still he has the same name, is club member, and is a singer
(brrrrrr).

Before we perform the class change, we extend the Player class to support it. I.e. the playerRole is not valid
after class change anymore (we unset the instance variable).

 Player instproc class args {
 my unset playerRole
 next
 }

Now we can re−class the player object to its new class (now Franz Beckenbauer is President of Bayern
Munich.

 $fb class President
 # Check that the playerRole isn't there anymore.
 if {[catch {$fb set playerRole} errMsg]} {
 puts "CATCHED EXCEPTION: The player role doesn't exist anymore \
 (as it should be after the class change)"
 }

But still Franz Beckenbauer can entertain us with what he believes is singing:

 $fb sing "lali"

Now we define some new players for Bayern Munich:

 bayernMunich newPlayer −name "Oliver Kahn" −playerRole GOALY
 bayernMunich newPlayer −name "Giovanne Elber" −playerRole PLAYER

If we enlist the players of Munich Franz Beckenbauer is not enlisted anymore:

 bayernMunich printPlayers

But as a president he still appears in the list of members:

 bayernMunich printMembers

Now consider an orthonogal extension of a transfer list. Every transfer in the system should be notified. But
since the transfer list is orthogonal to SoccerTeams we do not want to interfere with the existing
implementation at all. Moreover, the targeted kind of extension has also to work on all subclasses of
SoccerTeam. Firstly, we just create the extension as an ordinary class:

XOTcl − Tutorial

 Introductory Overview Example: Soccer Club 7

 Class TransferObserver
 TransferObserver instproc transferPlayer {pname destinationTeam} {
 puts "Player '$pname' is transfered to Team '[$destinationTeam name]'"
 next
 }

Now we can apply the class as a per−class mixin, which functions exactly like a per−object mixin, but on all
instances of a class and its subclasses. The next primitive ensures that the original method on SoccerTeam
is called after notifying the transfer (with puts to stdout):

 SoccerTeam instmixin TransferObserver

If we perform a transfer of one of the players, he is moved to the new club and the transfer is reported to the
stdout:

 bayernMunich transferPlayer "Giovanne Elber" chelsea

Finally we verify the transfer by printing the players:

 chelsea printPlayers
 bayernMunich printPlayers

Object and Class System

In XOTcl every object is associated with a class over the class relationship. Classes are special objects with
the purpose of managing other objects. ``Managing'' means that a class controls the creation and destruction of
its instances and that it contains a repository of methods (``instprocs'') accessible for the instances.
Object−specific methods are called ``procs'', instance methods are called ``instprocs''.

The instance methods common to all objects are defined in the root class Object (predefined or
user−defined). Since a class is a special (managing) kind of object it is managed itself by a special class called
``meta−class'' (which manages itself). One interesting aspect of meta−classes is that by providing a
constructor pre−configured classes can be derived. New user−defined meta−classes can be derived from the
predefined meta−class Class in order to restrict or enhance the abilities of the classes that they manage.
Therefore meta−classes can be used to instantiate large program structures, like some design patterns (see
[Neumann and Zdun 1999a] for more details). The meta−class may hold the generic parts of the structures.
Since a meta−class is an entity of the program, it is possible to collect these in pattern libraries for later reuse
easily.

XOTcl supports single and multiple inheritance. Classes are ordered by the relationship superclass in a
directed acyclic graph. The root of the class hierarchy is the class Object. A single object can be instantiated
directly from this class. An inherent problem of multiple inheritance is the problem of name resolution, when
for example two super−classes contain an instance method with the same name. XOTcl provides an intuitive
and unambiguous approach for name resolution by defining the precedence order along a linear ``next−path''
incorporating the class and mixin hierarchies, which is modeled after CLOS. A method can invoke explicitly
the shadowed methods by the predefined command next. When this command is executed a shadowed
method is ``mixed into'' the execution of the current method. Method chaining without explicit naming of the
targeted method is very important for languages supporting a dynamic class system, because one cannot

XOTcl − Tutorial

 Introductory Overview Example: Soccer Club 8

always predict which classes are currently participating in the inheritance hierarchy at design time (often
necessary in inheritance models, like C++).

An important feature of all XOTcl objects is the read/write introspection. The reading introspection abilities of
XOTcl are packed compactly into the info instance method which is available for objects and classes. All
obtained information can be changed at run−time dynamically with immediate effect. Unlike languages with a
static class concept, XOTcl supports dynamic class/superclass relationships. At any time the class graph may
be changed entirely using the superclass method, or an object may change its class through the class
method. This feature can be used for an implementation of a life−cycle or other intrinsic changes of object
properties (in contrast to extrinsic properties e.g. modeled through roles and implemented through per−object
and per−class mixins [Neumann and Zdun 1999c]) . These changes can be achieved without loosing the
object's identity, its inner state, and its per−object behavior (procs and per−object mixins).

Figure 2: Object and Class System

Basic Functionalities

Objects

Initially XOTcl offers two new commands: Object and Class. They represent hooks to the features of the
language. This section discusses both of them in detail and shows how they function in the context of XOTcl.
Note, that even if most of this is compatible to OTcl, a few changes occur. For this reason, this section is no
introduction to plain OTcl. The Object command provides access to the Object class, which holds the
common features of all objects, and allows us to define new objects. Objects are always instances of classes,
therefore, objects defined with the Object command are (initially) instances of the Object class. But since
they have no user−defined type, they may be referred to as singular objects. As all other objects they may be
specialized by object−operations and −data.

The object command has the following syntax:

 Object objName ?args?

A command of this form is a short−cut for a message to the create instance method (forwarded
automatically by the unknown mechanism, which is invoked every time the message dispatch system
discovers an unknown message):

 Object create objName ?args?

XOTcl − Tutorial

 Objects 9

It creates a new object of type Object with the name objName (in fact it invokes a create call on the
Object class). objName becomes a new command, which allows us to access the created object. Similiar to
the Object command it may be used like a normal Tcl−command (using sub−commands to access the
object's methods). Therefore, this form of access is called object−command approach. A simple example is an
object which holds the information of a kitchen. It is created by:

 Object kitchen

An object creation calls the constructor init of the object's class. The destruction of an object is handled by
the destroy instance method. The general syntax of destroy is:

 objName destroy

E.g. the kitchen object is destroyed by:

 kitchen destroy

To invoke a user−defined destruction process, it is possible to overload this instance method in every class
derived from object.

Data on Objects

The Object class provides a range of operations to manage objects, including those to manipulate
data−structures on the objects. They are similiar to the same−named Tcl−commands:

 objName set varname ?value?
 objName unset v1 ?v2 ... vn?

The set instance method with given value option allows us to manipulate an object−variable's value or to
create a new one, if the variable varname does not exist on the object so far. Without value option the set
operation queries the variable and returns it's value, if the variable exists, otherwise it produces an error
message. The unset operation deletes one or optionally a set of variables from an object. For example the
kitchen object can store information on the color of the wall−paper by:

 kitchen set wallPaperColor white

Similiar to Tcl−variables the object variables are dynamical; they may be set at run−time when they are
needed and unset when they become obsolete. E.g. the persons in the kitchen may be stored in an array. If
there are no persons in the kitchen the array is deleted:

 # Peter enters the kitchen to cook
 kitchen set persons(cook) Peter
 ...
 # Marion enters the kitchen to take one of the seats
 kitchen set persons(seat1) Marion
 ...
 # Both Peter and Marion leave the kitchen
 # the array is deleted by unset
 kitchen unset persons

Since XOTcl variables are internally realized through Tcl−variables they may be treated like all
Tcl−variables. For that reason they have all Tcl−variable abilities, including the possibility to handle them as
lists or arrays (as seen in the last example). The array command of Tcl is mapped to an XOTcl−command

XOTcl − Tutorial

Data on Objects 10

directly. An object−oriented call to an object of the form

 objName array option ary args

forwards its arguments to an array Tcl−command for the object´s instance variable ary. It could be used
like the same−named Tcl−command, e.g. the command

 kitchen array names persons

returns all indexes currently stored in the persons array.

Similarly Tcl´s incr command is mapped to the object system. A call with the syntax:

 objName incr varName ?value?

increments varName with the given value (or without given value with 1).

Methods on Objects

Methods in XOTcl resemble Tcl−procedures. On objects one can define object−specific methods, called
procs. Instance methods which are defined on classes are called instprocs. A new proc is defined using the
proc instance method of the class Object:

 objName proc name args body

The arguments of the proc instance method specify the name, the arguments as a Tcl−list, and the body of
the new proc. All of them must be given, only one of args and body may be empty. An example proc would
be a method to let persons enter the kitchen:

 kitchen proc enter {name} {
 [self] set persons($name) [clock seconds]
 }

Here the predefined self command is used in one of three possible ways, which allow us to access useful
information when working with XOTcl−methods, these are in particular:

self − returns the name of the object, which is currently in execution. This command is similar to
this in C++. It is automatically generated on each object. If it is called from outside of a proc, it
returns the error message ``Can't find self''.

•

self class − the self command with a given argument class returns the name of the class,
which holds the currently executing instproc. Note, that this may be different to the class of the
current object. If it is called from a proc it returns an empty string.

•

self proc − the self command with a given argument proc returns the name of the currently
executing proc or instproc.

•

The method enter can be written in XOTcl as well with less syntactic overhead by using the predefined
primitive my instead of [self]:

 kitchen proc enter {name} {
 my set persons($name) [clock seconds]
 }

XOTcl − Tutorial

Methods on Objects 11

Note, that there is a difference to the realisation of these object informations to OTcl. XOTcl uses commands
in order to make XOTcl−methods compatible to Tcl−procedures and accessible via namespace−paths. OTcl
uses the three variables self, class and proc, which are filled automatically with proper values by the
interpreter each time a method is called. To gain compatibility a compilation option AUTOVARS is available
which provides these variables additionally (if the option is defined when compiling XOTcl). The default is,
that the option is turned off.

Each XOTcl−method has its own scope for definition of local variables for the executing method. In most
cases when a method uses object−variables, it is likely that the programmer wants to make one or more of
these variables part of the method's scope. Then the Tcl−command for variable handling, like set, lindex,
array, ... work also on these variables. The instvar instance method links a variable to the scope of an
executing method. It has the syntax:

 objName instvar v1 ?v2 ... vn?

It makes the variables v1 ... vn, which must be variables of the object, part of the current method's scope.
A special syntax is:

 {varName aliasName}

for one of the variables. This gives the variable with the name varName the alias aliasName. This way the
variables can be linked to the methods scope, even if a variable with that name already exists in the scope.
Now the enter method can be adapted slightly and a leave method can be added, which uses Tcl's info
command to check whether the named person is in the object's persons array. To demonstrate the
alias−syntax this is done with the persons array and the alias p.

 kitchen proc enter {name} {
 my instvar persons
 set persons($name) [clock seconds]
 }

 kitchen proc leave {name} {
 my instvar {persons p}
 if {[info exists p($name)]} {
 puts "$name leaves after [expr {[clock seconds]−$p($name)}] seconds"
 unset p($name)
 } else {
 puts "$name is not in the room"
 }
 }

Information on Objects

XOTcl offers reading and writing introspection. The reading introspection abilities are packed compactly into
the info instance method which is available for objects and classes (there are special info options for object
aggregations, nested classes, mixins, filters, meta−data and assertions, which are explained separately in the
following sections). The info instance method's options, from the view of an object, are summarized in the
following table. They are identically to the OTcl info options on objects.

The object info options

XOTcl − Tutorial

 Information on Objects 12

objName info args
method

Returns the arguments of the specified method.

objName info body
method

Returns the body of the specified method.

objName info class
?classname?

Returns the name of the class of the current object, if classname was not
specified. Otherwise it returns 1 if classname matches the object's class
and 0 if not.

objName info commands
?pattern?

Returns all commands defined on the object if pattern was not
specified. Otherwise it returns all commands that match the pattern.

objName info default
method arg var

Returns 1 if the argument arg of the method method has a default
value, otherwise 0. If the default value exists it is stored in var.

objName info procs
?pattern?

Returns all procs defined on the object if pattern was not specified,
otherwise it returns all procs that match the pattern.

objName info vars
?pattern?

Returns all variables defined on the object if patternwas not
specified, otherwise it returns all variables that match the pattern.

For example on the kitchen object

 kitchen info procs

returns enter and leave as a Tcl−list since these are the procs defined on the object.

Classes

Creating Classes and deriving Instances

There are different ways to create a class in XOTcl. They have in common that they derive the new class from
a meta−class. Initially the Class command provides access to the meta−class Class, which holds the
features common to all classes. It also allows one to derive new meta−classes. The common way to create a
new class is:

 Class ClassName ?args?

Similar to the object short form, this is a short form of a call to the create instance method of the
meta−class Class, which is also executed by the standard unknown mechanism. This mechanism is always
triggered when XOTcl does not know a method called on an object. Supposed that there is no method with the
name ClassName, defined on the class−object of Class, XOTcl looks up the method unknown (which is
found on the Class Object) and executes it. The standard unknown−mechanism of XOTcl calls create
with all arguments stepping one step to the right; in the general case:

 Class create ClassName ?args?

This may also be called directly. Besides the indirection when using unknown, in most cases there is no

XOTcl − Tutorial

Classes 13

difference in the action performed: Firstly the memory is allocated, using the alloc instance method,
afterwards the constructor init is called on the creating object, which is in this case the class−object of the
meta−class Class. In seldom cases the programmer may want to suppress the init call. To do so the
alloc instance method may also be called directly:

 Class alloc ClassName ?args?

As seen in the preceding section objects are created in the same way. The difference was, that the command
Object, which accesses a class, instead of the command Class, which accesses a meta−class, was used.
The user−defined classes may also be used in the same way to create new objects:

 ClassName objName ?args?

Resembling the creation of classes this creates an object objName of type ClassName using the unknown
mechanism. That means the create instance method of the class is called. If there is no other instance
method defined on the class−path so far (which would mean, an user defined creation process is invoked), the
create instance method of the class Object is invoked. This method is similar to the create method of
the meta−class Class. It firstly calls the alloc instance method on its (of the Class class) which allocates
memory for the object, and makes it an instance of it's class. Afterwards a call to the constructor init is
invoked.

Now we can specify the object for the kitchen by the class to which it belongs. In this case a kitchen is an
instance of a room.

 Class Room
 Room kitchen

A set call on a class creates an instance variable on the class−object. This variable is unique for all instances,
therefore, it may be referred to as a class variable.

Methods in Classes

Methods in classes are called instprocs. Instprocs are reachable for the class−object and all other instances of
the class. The syntax for defining an instproc is:

 ClassName instproc procname args body

It is similar to the definition of procs on objects, but uses the keyword instproc to distinguish between the
methods defined on the class−object and those defined on the class. Since all rooms (in the modeled world)
have ceilings, we may want to define a simple convenience instproc, which is able to set the color:

 Room instproc setCeilingColor color {
 my set ceilingColor $color
 }

A special instproc, the constructor init, was mentioned already. Now we are able to define such an instproc.
Defined on a class it is responsible for all initialisation tasks, which needed to be performed, when
constructing a new instance object of the class. The constructor of the Room can initialize a variable for the
color, in which the ceiling is painted, to white as default, since this is the color of ceilings without painting.

 Room instproc init args {
 my setCeilingColor white
 next

XOTcl − Tutorial

Methods in Classes 14

 }

After this definition, all instances derived from the Room class have an instance variable ceilingColor
with the value white. The args argument used here is a special argument in Tcl which allows us to use a
list of arguments which may change its length from call to call.

Information on Classes

Resembling to objects, information on classes may be gained through the info instance method of the
meta−class Class. Note that this instance method does not only support the class info options, but also the
object info options, since the accessing command refers to the class−object, which itself is an object and,
therefore, offers its informations. The following table summarizes the additional info options available on
classes.

The class info options

ClassName info heritage
?pattern?

Returns a list of all classes
in the precedence order of
the class hierarchy matching
pattern or of all, if
pattern was not
specified.

ClassName info instances
?pattern?

Returns a list of the
instances of the class
matching pattern or of
all, if pattern was not
specified.

ClassName info instargs method
Returns the arguments of
the specified method.

ClassName info instbody method
Returns the body of the
specified method.

ClassName info instcommands
?pattern?

Returns all commands
defined on the class, if
pattern was not
specified, otherwise it
returns all commands that
match the pattern.

ClassName info subclass
?classname?

Returns a list of all
subclasses of the class, if
classname was not
specified, otherwise it
returns 1 if classname is
a subclass and 0 if not.

ClassName info superclass
?classname?

Returns a list of all
super−classes of the class, if
classname was not
specified, otherwise it

XOTcl − Tutorial

Information on Classes 15

returns 1 if classname is
a superclass and 0 if not.

Inheritance

Besides encapsulation of operations and state in objects, a second central ability of object−orientation is
inheritance. XOTcl supports single and multiple inheritance with a directed acyclic class graph. Automatically
each new class created by the instance methods create and alloc of Class inherits from Object.
Therefore, it is ensured that all instances of the new class have access to the common features of objects
stored in the class Object.

To specify further inheritance relationships the instance methods superclass of Class is used:

 ClassName superclass classList

E.g. in the example a kitchen may be seen as a special room:

 Class Room
 Class Kitchen −superclass Room

Now all instances of Kitchen are able to access the operations stored in the Room and in the Kitchen
class. Note the transition the kitchen was going through: firstly it was a singular object, then it was an object
with a user−defined class, and now it is a class. This is possible (and not senseless) because of the per−object
specialisation ability and the dual shape of a class, which is at the same time object and class. Both lead to a
seamless connection of the run−time properties (the object features) and their descriptive properties (the class
features). It is possible to avoid the strict distinction between them, known from static typed languages, like
C++, Java, etc.

Moreover, since the syntaxes of constructs expressing the same concern are nearly identical, we can refactor a
solution with very few changes to the alternative. We will see similar "ease of refactoring" throughout the
XOTcl language. E.g., we can also easily refactor the class hierarchies or exchange class hierarchies against
mixin solutions with only slight changes in the code.

Besides single inheritance, as seen, XOTcl provides also multiple inheritance. This is syntactically solved by
giving the superclass instance method a list of classes instead of a single class as argument.

 Class Room
 Class 4WallsRoom −superclass Room
 Class CookingPlace
 Class Kitchen −superclass {4WallsRoom CookingPlace}

Now the kitchen class is specialized a bit more. It is a special room which has four walls and it is a cooking
place. Multiple inheritance, as seen here, is as simple to apply as single inheritance.

Most often when the disadvantages of multiple inheritance are discussed, the name resolution along the class
graph is considered as the biggest problem. The question is, which method is to be chosen and which path
through class graph is to be taken, if more then one method of the specified name exist on the class graph.

XOTcl − Tutorial

Inheritance 16

In the example such questions would arise for an object of the Kitchen class, if two same−named methods
are defined on CookingPlace and 4WallsRoom or if a method of the class Object is called, which is
reachable through two paths (along CookingPlace or Room).

Often − e.g. in the inheritance model of C++ − the path through the graph is not clearly determined and/or the
rules are too complicated to be understood on the first glance. The programmer often can only determine by
trial which method is found firstly. Than an explicit naming of the class is necessary, which means storage of
non−local information in sub−classes. Often different compilers of one language behave differently. All these
issues make code reuse difficult. Moreover understandability and portability are reduced.

Figure 3: The example classes and the following next−path

XOTcl goes an intuitive and unambiguous way to solve this problem. It resolutes the precedence order along a
``next−path''. Firstly the class of the object is searched, which is Kitchen in example. Then the
super−classes are searched in definition order, which means at first 4WallsRoom, then CookingPlace.
Each branch is searched completely, before changing to the next branch. That means, Room is searched,
before the CookingPlace branch is visited. At last the top of the hierarchy, the class Object, is searched.

The usage of next in XOTcl is different to OTcl: In OTcl it is always necessary to provide the full argument
list for every invocation explicitly. In XOTcl, a call of next without arguments can be used to call the
shadowed methods with the same arguments (which is the most common case). When arguments should be
changed for the shadowed methods, they must be provided explicitly in XOTcl as well. In the rare case that
the shadowed method should receive no argument, the flag −−noArgs must be used.

Destruction of Classes

Classes are destroyed by the destruction of the class−object using the destroy method of the Object class.
The destruction of super−classes does not destroy the sub−classes. The super−class is simply removed from
the sub−classes' super−class lists. All classes have the super−class Object, if no super−class is specified.
Therefore, if all super−classes are destroyed or removed, the new super−class is Object, not: no

XOTcl − Tutorial

Destruction of Classes 17

super−class. The destruction of the class of an object does neither delete the object nor leave it without class.
In XOTcl a deleted class leaves it's instances with the class Object.

So all empty class− and superclass−relationships are automatically reseted to Object. Note, that this are
differences to OTcl, where the destruction of an class destroys all instances and an empty super−class list
remains empty.

Method Chaining

A special feature of XOTcl is the method chaining without explicit naming of the ``mix−in''−method. It
allows one to mix the same−named superclass methods into the current method (modelled after CLOS). The
previously described next−path is the basis for this functionality. At the point marked by a call to the next
primitive of XOTcl the next shadowed method on the next path is searched and, when it is found, it is mixed
into the execution of the current method. When no method is found, the call of next returns an empty string,
otherwise it returns the result of the called method. Note, that the realization through a primitive command −−
similar to the self command −− is a difference to OTcl, where next is realized through an instance method
of Object. The syntax is:

 next ?arguments|−−noArgs?

Note, that also the usage of next in XOTcl is different to OTcl, since the next call without arguments in
OTcl means per default that no arguments are passed. But most often all arguments are passed through to the
shadowed method (since it will most likely have the same signature like its precessedor). When all variables
should be passed through, in OTcl it is necessary for correct variable substitution to use:

 eval $self next $args

To avoid such difficulties, we made the passing of all arguments the default case; a simple

 next

performs the task of passing all arguments to the shadowed methods. These arguments are called the standard
arguments. If the standard argument feature should not be used, optionally arguments can be given or the flag
−−noArgs could be set as sole argument, which means that the shadowed method is called with no
arguments.

E.g. the following next call ignores the standard arguments and sends the arguments 1 and 2 instead:

 next 1 2

As an example all classes involved in the previous example should get a constructor instance method, which
simply sets an instance variable on the object:

 Room instproc init args {
 my set roomNumber 0
 next
 }
 4WallsRoom instproc init args {
 my set doorPosition 0
 next
 }
 CookingPlace instproc init args {
 my set stoveType electric

XOTcl − Tutorial

Method Chaining 18

 next
 }
 Kitchen instproc init args {
 my set cookName −
 next
 }

After creation an object of class Kitchen gets automatically four instance variables cookName,
roomNumber, doorPosition and stoveType setted up with default values in this order (since this is
the order of the classes in the next−path). Note, that the order is important, because one missing next call, in
one of the init methods, means that succeeding init methods will not be executed. This mechanism
functions equally on all kinds of instprocs, not only on constructors.

The constructors use the args argument, which allows us to give a list of variable length as arguments. To
ensure reusability of our classes the constructors should use args in most cases, since they may pass through
arguments for constructors further up the class hierarchy.

If a proc with the searched name exists on the object it shadows all instprocs. A next call in a proc leads to
the normal next−paths search, starting with the object's class.

By the way, an observant reader might notice that the example above can be rewritten without explicit
constructors, just by using paramters with default values.

 Class Room −parameter {{roomNumber 0}}
 Class 4WallsRoom −superclass Room −parameter {{doorPosition 0}}
 Class CookingPlace −parameter {{stoveType electric}}
 Class Kitchen −superclass {4WallsRoom CookingPlace} −parameter {{cookName −}}

If an instance of a Kitchen is created it will contain instance variables for doorPosition, cookName,
roomNumber, and stoveType, as the following statements will show.

 Kitchen k
 puts [k info vars]

Dynamic Class and Superclass Relationships

Another property of XOTcl that distinguishes it from statically typed languages are dynamics of class
relationships. The realization of the definition of super−classes as seen above with the superclass method
suggests already, that it is not only available at the class definition time. In the above example its appended to
the class definition with "−superclass" as a short syntax for method invocation at defintion time (all other
avaiable methods can also be called with a preceding dash ("−") appended to definitions).

At any time the class graph may be changed entirely using the superclass method. Suppose the rooms and
kitchens created in modelling of a house should be displayed to a screen, but it is not determined, whether the
user of the system has the possiblities for graphical outputs. Two classes TextOutput and
GraphicalOutput may be defined, which handle the output. Both have an instproc paint which does
the painting of the virtual world on the chosen display type. The common output requirements are handled by
a derived class VirtualWorldOutput which calls the paint method of the superclass using next. In
statically typed languages it would need more sophisticated constructs to change the output class at run−time.
E.g. a delegation to another object handling the intrinsic task of the output object would be introduced solely
for the purpose of configuring the output form. With a dynamic class system we can use the superclass
method to do so easily:

XOTcl − Tutorial

Dynamic Class and Superclass Relationships 19

 Class TextOutput
 TextOutput instproc paint args {
 # do the painting ...
 }
 Class GraphicalOutput
 GraphicalOutput instproc paint args {
 # do the painting ...
 }

 # initially we use textual output
 Class VirtualWorldOutput −superclass TextOutput
 VirtualWorldOutput instproc paint args {
 # do the common computations for painting ...
 next; # and call the actual output
 }

 # users decides to change to graphical output
 VirtualWorldOutput superclass GraphicalOutput

Sometimes, such a change to new intrinsic properties should not happen for all instances of a class (or the
class hierarchy), but only for one specific object. Then the usage of a dynamic super−class relationship is a
too coarse−grained means. A second form of such dynamics is the changing of the relationship between object
and class. This means, objects can also change their class dynamically at run−time. This feature may be used
to model a life−cycle of an object, without loosing the object's identity, inner state or
per−object−specializations through procs. The class instance method enables this functionality.

An example would be an agent for the virtual world. Agents may be placeholders for persons, who
interactively travel the world, or programs, which act automatically. When a person decides at run−time to
give a task it has performed formerly by hand to an automatic agent, the agents nature changes from
interactive agent to automatic agent, but the identity and the local state (that means the parts of the task, that
are already fulfilled by the person) stay the same. This is a scenario for changing class relationships, e.g.:

 Class Agent
 Class AutomaticAgent −superclass Agent
 Class InteractiveAgent −superclass Agent

 # create a new agent for a person
 InteractiveAgent agent1

 # the person does something ...
 #and decides the change to an automatic agent
 agent1 class AutomaticAgent

Meta−Classes

As seen already, a special kind of classes are meta−classes. They are classes (and like all XOTcl classes also
objects) which contain the features common to all derived classes. We have already shown the meta−class
Class, which we was used in the previous sections to create new classes.

A new meta−class can be derived from an existing meta−class by defining Class as superclass. Beside that a
meta−class creation is a normal class−definition:

 Class myMetaClass −superclass Class

This defines a new meta−class myMetaClass, which has all the abilities of meta−classes. That means, that

XOTcl − Tutorial

 Meta−Classes 20

the programmer is able to specify new class features or override old ones. Afterwards he may instantiate these
into new classes.

This is a very powerful language feature, since it allows one to give some classes further abilities than the
others (or to restrict classes). This way large programm structures, like certain design pattern parts, may be
instantiated. Meta−classes hold the common abstract parts of the structures. They allow one to form libraries
of such structures very easily.

As a simple example we can derive a new meta−class NoClassInfo from Class. Afterwards we override
the info method of Class. Thus the classes created with NoClassInfo, have an info option that only
produces an error message. All classes created with NoClassInfo, like Agent in the example below, are
not capable of accessing the class info method anymore:

 Class NoClassInfo −superclass Class
 # redefine info ability
 NoClassInfo instproc info args {
 return "No class info avaiable"
 }
 # derive agent class from meta−class, which
 # can not access class info
 NoClassInfo Agent

Now a call like:

 Agent info superclass

returns in the error message.

Create, Destroy, and Recreate Scheme

XOTcl allows since version 0.84 for a flexible destroy and recreate scheme. create and alloc are both
Class instprocs handling creation for their instances. I.e.:

 className alloc [self]

and

 className create [self]

are used for creating an instance. A similar method instdestroy exists on Class that handles physical
destruction of an object. The method destroy on Object which lets an object destroy itself in fact has the
following behavior:

 Object instproc destroy args {
 [my info class] instdestroy [self]
 }

However, this behavior is not implemented in XOTcl, but in C. create distinguishes between the following
situations:

Create a new object:create calls alloc and then doInitializations.•

XOTcl − Tutorial

 Create, Destroy, and Recreate Scheme 21

Recreate an existing object: When the specified object exists, it is recreated through the recreate
method:

 recreate [self]

recreate can be customized e.g. by overloading or interception. By default it calls cleanup
followed by doInitializations.

•

In both cases, the method doInitializations is called automatically from C and has the following
default behavior:

Search for parameter default values,•
Call parameter initialization methods,•
Call the constructor init.•

Each step has a method call that can be changed, intercepted, etc. Of course, cleanup, recreate,
instdestroy, etc. can also be overloaded or intercepted.

Consider a typical case for overloading recreate: a structure preserving recreate that cleans up the
class but preserves the existing class hierarchy (subclass and instance relationships):

Class StructurePreservingRecreate
StructurePreservingRecreate instproc recreate {cl args} {
 if {[my isclass $cl]} {
 set subclass [$cl info subclass]
 set instances [$cl info instances]
 }
 next
 if {[my isclass $cl]} {
 foreach sc $subclass {
 $sc superclass $cl
 }
 foreach i $instances {
 $i class $cl
 }
 }
}
Object instmixinappend StructurePreservingRecreate

Now the following code does not change the superclass or instance relationships of C:

Class A
Class B
Class C −superclass {A B}
Class D
Class E −superclass {C D}
C c1
C c2

recreate −> is structure preserving
Class C −superclass {A B}
C c2

test
puts superclass=[C info superclass]
puts subclass=[C info subclass]
puts instances=[C info instances]

XOTcl − Tutorial

 Create, Destroy, and Recreate Scheme 22

puts class=[c1 info class]
puts class=[c2 info class]

XOTcl − Tutorial

 Create, Destroy, and Recreate Scheme 23

Message Interception Techniques
Even though object−orientation orders program structures around data, objects are characterized primarily by
their behavior. Object−oriented programming style encourages the access of encapsulated data only through
the methods of an object, since this enables data abstractions. A method invocation can be interpreted as a
message exchange between the calling and the called object. Therefore, objects are at runtime only traceable
through their message exchanges. At this point the message interceptors can be applied to catch and
manipulate all incoming and outgoing messages of an object.

Generally interceptors can be applied to attach additional or extrinsic concerns to an object or a class or a
class hierarchy. For instance roles or aspects can be implemented this way on various levels of scale.

We have already discussed some interception techniques implicitly. E.g., the unknown mechanism intercepts
messages that have not be found on the object. It can be used as a very useful programming technique, e.g.,
the define a default behavior for an object. The interceptors presented in this section have a different
character: They are applied before/after the original method even if the method is defined for the target object.
Thus these interception techniques may be applied

We will discuss the message interceptors in this section in detail. The table below gives an impression, when
which interceptor may be applied.

Message Interceptors Overview

Applied When Primary Target Structure Coverage

Per−Object Filter before/after a call object hierarchies all methods

Per−Class Filter before/after a call class and class hierarchiesall methods

Per−Object Mixin before/after a call object specific methods

Per−Class Mixin before/after a call class and class hierarchiesspecific methods

Unknown Mechanism after method was not found object all unknown calls

Filter

The filter (see [Neumann and Zdun 1999a] for more details) is a language construct to implement broader
extensional concerns either for a single object or for several classes or class hierarchies. This way large
program structures at the scale of several classes or class hierarchies can be managed. It is a very general
interception mechanism which can be used in various application areas. E.g. a very powerful programming
language support for certain design patterns is easily achievable, but there are also several other domains
which are covered, like tracing of program structures, self−documentation at run−time, re−interpretation of
the running program, etc.

A per−class filter is a special instance method that is registered for a class C. A per−object filter is a special
instance method that is registered for a object o. Every time an object of class, C or the object o respectively,
receives a message, the filter method is invoked automatically.

XOTcl − Tutorial

Filter 24

Usage of Filters

All messages to a filtered object must go through the filter before they reach their destination object. A simple
example would be a sole filter on the class of the object. To define such a filter two steps are necessary.
Firstly an filter method has to be defined, then the filter has to be registered. The filter method consists of
three parts which are all optional. A filter method has the following form:

 ClassName instproc FilterName args {
 pre−part
 next
 post−part
 }

When a filter comes to execution at first the actions in the pre−part are processed. Afterwards the filter is free
in what it does with the message. Especially it can (a) pass the message, which was perhaps modified in the
pre−part, to other filters and finally to the object. It can (b) redirect it to another destination. Or it can (c)
decide to handle the message on its own. The forward passing of messages is implemented through the next
primitive of XOTcl. After the filter has passed its pre−part, the actual called method is invoked through
next.

Afterwards, similar to ordinary next calls, the execution returns to the point in the filter, where the next
call is located and resumes execution with the actions of the post−part. These may contain arbitrary
statements, but especially may take the result of the actual called method (which is returned by the next−call)
and modify it. The caller then receives the result of the filter, instead of the result of the actual called method.

The pre− and post−part may be filled with any ordinary XOTcl−statements. The distinction between the three
parts is just a naming convention for explanation purposes.

The filter uses the args argument which lets us use a list of variable length as arguments, since it must filter
a lot of different calls, which may have different argument lists. Furthermore, it may pass through arguments
to other filters and the preceding filters may change the argument list.

Since any proc/instproc may be a filter, a registration of the filter is necessary, in order to tell XOTcl, which
instprocs are filters on which classes. The filter and instfilter instance methods are able to handle
this task for per−object filters and per−class filters respectively. Similar to the XOTcl language introduced so
far, the filter registration is dynamic at run−time. By supplying a new list of filters to
filter/instfilter, the programmer can change the filters registered on a class at arbitrary times. The
filter instance method has the syntax:

 ClassName instfilter filterList

for per−class filters and:

 objName filter filterList

for per−object filters.

Now a simple example should show the filter's usage. In the preceding examples we have defined several
rooms. Every time a room action occurs it is likely that the graphical sub−system has to change something on
the output of that particular room. Therefore, at first we need a facility to be informed every time an action on
a room happens. This is quite easily done using filters:

XOTcl − Tutorial

Usage of Filters 25

 Class Room
 Room r1; Room r2; # just two test objects

 Room instproc roomObservationFilter args {
 puts "now a room action begins"
 set result [next]
 puts "now a room action ends − Result: $result"
 return $result
 }

 Room instfilter roomObservationFilter

Now every action performed on room objects is notified with a pre− and a post−message to the standard
output stream. We return the result of the actual called method, since we don't want to change the program
behavior at all. E.g. we can set an instance variable on both of the two room objects:

 r1 set name "room 1"
 r2 set name "room 2"

The output would be:

 now a room action begins
 now a room action ends − Result: room 1
 now a room action begins
 now a room action ends − Result: room 2

Figure 4: Cascaded Message Filtering

All classes may have more than one filter. In fact they may have a whole filter chain, where the filters are
cascaded through next. The next method is responsible for the forwarding of messages to the remaining

XOTcl − Tutorial

Usage of Filters 26

filters in the chain one by one till all pre−parts are executed. Afterwards the actual method is executed and
then the post−parts come to turn. If one next−call is omitted the chain ends in this filter method. As an
example for an additional filter we may register a filter that just counts the calls to rooms.

 Room set callCounter 0 ;# set class variable
 Room instproc counterFilter args {
 [self class] instvar callCounter
 incr callCounter
 puts "the call number callCounter to a room object"
 next
 }
 Room instfilter {roomObservationFilter counterFilter}

Filters are invoked in registration order. The order may be changed by removing them and adding them in
new order. Filters are inherited by sub−classes. E.g. in the preceding example for the next path, an
OvalOffice was derived from the Room class. Without a change to the program each OvalOffice
object automatically produces the same filter output as rooms.

Figure 5: Filter Inheritance

Filter chains can also be combined through (multiple) inheritance using the next method. When the filter
chain of the object's class is passed, the filter chains of the superclasses are invoked using the same
precedence order as for inheritance. Since on the subclass there may also be a another filter chain, without
sophisticated computing in the pre− and post−parts one can produce easily a powerful tracing facility. E.g. if
we want to distinguish an OvalOffice from other rooms we may want to add a filter solely for rooms of
the type OvalOffice:

XOTcl − Tutorial

Usage of Filters 27

 Class OvalOffice −superclass Room
 OvalOffice o1; # test object
 OvalOffice instproc ovalOfficeObservationFilter args {
 puts "actions in an oval office"
 next
 }
 OvalOffice instfilter ovalOfficeObservationFilter

A simple call to the o1 object, like:

 o1 set location "Washington"

produces the following output:

 actions in an oval office
 now a room action begins
 the call number 3 to a room object
 now a room action ends − Result: Washington

As seen already, filter registrations can be added dynamically at runtime. But they may also be removed.
Perhaps the counting on rooms should stop after a while, then a simple call of the instfilter method is
sufficient:

 Room instfilter roomObservationFilter

Filters can be removed completely by giving an empty list to the registration method:

 Room instfilter {}

Per−object filters operate on a single object. E.g. if we only want to observe a single Room object room1, we
can use the filter method to register the roomObservationFilter only for this particular instance:

 room1 filter roomObservationFilter

As a filter we can register any method in the precedence order of teh class or object. Thus we can also register
procs as per−object filters. Additionally, meta−class methods may be registered as per−class filters. Filters are
linearized so that each filter is only executed once, even if it is registered multiple times.

Introspection on Filters

In order to gain information about the currently registered filters on a certain object/class, the object info
option filters and the class info option instfilters may be queried. It returns a list of the currently
registered filters:

 ClassName info
instfilter

 objName info filter

A special callstack info option for filters is self filterreg. It returns the name of the object or class on
which the filter is registered. Since the filter may be registered on other objects/classes than the one on which

XOTcl − Tutorial

Introspection on Filters 28

it is defined, this may vary from self class in the filter. The command returns a list of the form:

 objName filter filterName

or:

 className instfilter filterName

respectively.

A simple Trace Program Examples

The trace example primarily demonstrates the inheritance of filter chains. Since all classes inherit from
Object, a filter on this class is applied on all messages to objects. The Trace object encapsulates methods
for managing the tracing:

 Object Trace
 Trace set traceStream stdout

 Trace proc openTraceFile name {
 my set traceStream [open $name w]
 }

 Trace proc closeTraceFile {} {
 close $Trace::traceStream
 my set traceStream stdout
 }

 Trace proc puts line {
 ::puts $Trace::traceStream $line
 }

 Trace proc add classname {
 $classname instfilter [concat [$classname info filter] traceFilter]
 }

First we define the object and set a variable for the stream to which we send the trace outputs (here: stdout).
With a method for opening and a method for closing a file we can redirect the trace stream to a file. puts is
helper method for the filter to print an output to the selected output stream. In add the traceFilter is
appended to the existing filters of a specified class. The actual filter method (see below) displays the calls and
exits of methods with an according message. The calls are supplied with the arguments, the exit traces contain
the result values. We have to avoid the tracing of the trace methods explicitly.

 Object instproc traceFilter args {
 # don't trace the Trace object
 if {[string equal [self] ::Trace]} {return [next]}
 ::set context "[self class]−>[self callingproc]"
 ::set method [self calledproc]
 switch −− $method {
 proc −
 instproc {::set dargs [list [lindex $args 0] [lindex $args 1] ...] }
 default {::set dargs $args }
 }

XOTcl − Tutorial

A simple Trace Program Examples 29

 Trace::puts "CALL $context> [self]−>$method $dargs"
 ::set result [next]
 Trace::puts "EXIT $context> [self]−>$method ($result)"
 return $result
 }

As trace message we write the callee´s context (class and proc), the invoked method (using calledproc),
and the given arguments. In the switch statement we avoid to print whole method bodies.

With

 Trace add Room

messages to all rooms, including all instances of Room´s sub−classes, are surrounded with a CALL and an
EXIT output. With

 Trace add Object

messages to all objects in an XOTcl environment are surrounded with a CALL and an EXIT output. In
general, it is possible to restrict the trace to instances of certain classes, or to produce trace output for only
certain methods. This requires registration methods and a more sophisticated implementation of the filter
method.

Filter Guards

A filter guard is a set of conditions that determine whether a filter is to be executed upon a certain call or not.
Syntactically we can append a filter guard to the filter registration or it can be registered using the methods
filterguard for filters and instfilterguard for instfilters.

Each filter guard is an ordinary condition. A filter guard is executed in the call frame of the filter to be
executed, if the filter guard returns 1. Thus, the callstack information are already set to the values of the
targeted filter.

Let us consider a simple filter guard as an example.

Room instfilter {
 {loggingFilter {[self calleproc] == "open" || [self calleproc] == "close"}}
}

Here we limit the filter application of the logging filter on rooms to calls to open and close. All other calls to
requests are not filtered at all. Actually, the above syntax is a short form of:

Room instfilter loggingFilter
Room instfilterguard {
 [self calleproc] == "open" || [self calleproc] == "close"}
}

The filter guard language construct is registration centric. It only applies for the class or object on which a
filter is registered, not for all applications of the filter method. E.g. if we use loggingFilter on another class we
may give no or completely different filter guards.

XOTcl − Tutorial

 Filter Guards 30

If no filter guard is given for a filter, we assume that it is to be applied on all methods (equivalent to the filter
guard '1' which is always true). In principal, a filter guard may be expressed in an ordinary filter as well by
starting the filter method with a condition:

Room instproc loggingFilter args {
 if {!([self calleproc] == "open" ||
 [self calleproc] == "close")} {
 next
 ### filter code
}

There are several advantages of using filter guards instead of ordinary if−statements in filters. First, filter
guards are a more handy syntax. Secondly, as we will see in this paper, filter guards can be used to define
conditions in a reusable way. In this paper, we will use them to define reusable pointcuts. The filters
themselves become more reusable as well, since we can define them independently from the conditions
bundled with their registration. Thirdly, filter guards offer a better performance because we do not have to call
and evaluate the filter method, if the filter guard returns FALSE. Moreover, filter guards may call methods.
To avoid recursive filtering during the application of filter guards (which would limit performance even
more), filtering is disabled during execution of the guard.

If we call a method during a filter, as for instance callsMethod:

Room instfilterguard {[my callsMethod openURL]}

we have to find out in callsMethod the setting of the callstack information in the filter (here: calledproc is
interesting). This can be done using the getGuardedScope method which returns the level of the filter scope
that is guarded. With Tcl's uplevel we can switch into this scope and get the relevant filter information from
there, e.g.:

Room instproc callsMethod {method} {
 set level [my getGuardedScope]
 set calledproc [uplevel $level self calledproc]
 if {[string match $calledproc $method]} {
 return 1
 }
 return 0
}

Here, we first determine the guarded scope's level. Then we get the called proc information from this scope.
Finally, we check whether it matches the given method name or not.

Mixin Classes

Per−object and per−class mixins (see [Neumann and Zdun 1999c] for more details) are another interception
technique of XOTcl to handle complex data−structures dynamically. Here, we use mixin as a short form for
mixin class. All methods which are mixed into the execution of the current method, by method chaining or
through a mixin class, are called mixin methods. Mixin classes resembles the filter presented in the preceding
section. While the filters work on all calls to all methods of an object/class hierarchy, the mixin classes are
applied on specific methods. The filter is defined in a single method, while the mixin is composes several
method in a class.

XOTcl − Tutorial

Mixin Classes 31

Supplemental Classes

Mixin classes cover a problem which is not solvable elegantly just by the method chaining, introduced so far.
To bring in an addition to a class, the normal XOTcl way is to define a mixin method and chain the methods
through next, e.g.:

 Class Basic
 Basic instproc someProc {
 # do the basic computations
 }
 Class Addition
 Addition instproc someProc {
 # do the additional computations
 next
 }

In order to mix−in the additional functionality of the supplemental class Addition a new helper class
(sometimes called intersection class) has to be defined, like:

Basic+Addition −superclass Addition Basic

This is even applicable in a dynamical manner, every object of the class Basic may be changed to class
Basic+Addition at arbitrary times, e.g.:

 Basic+Addition basicObj
 ...
 basicObj class Basic+Addition

Now consider a situation with two addition classes. Then following set of classes has to be defined to cover all
possible combinations:

 Class Basic
 Class Addition1
 Class Addition2
 Class Basic+Addition1 −superclass Addition1 Basic
 Class Basic+Addition2 −superclass Addition2 Basic
 Class Basic+Addition1+Addition2 −superclass Addition2 Addition1 Basic

The number of necessary helper classes rises exponential. For n additions, 2n−1(or their permutations if order
matters) artificially constructed helper−classes are needed to provide all combinations of additional mix−in
functionality. Furthermore it is possible that the number of additions is unlimited, since the additions may
produce other additions as side−effects. This demonstrates clearly that the sub−class mechanism provides
only a poor mechanism for mix−in of orthogonal functionality. Therefore we provide an extension in the form
of object mixin classes, which are added in front of the search precedence of classes.

Per−Object Mixins

The mix−ins methods extend the next−path of shadowed methods. Therefore, per−object mix−in methods use
the next primitive to access the next shadowed method. Consider the following example:

 Class Agent
 Agent instproc move {x y} {
 # do the movement
 }
 Class InteractiveAgent −superclass Agent

XOTcl − Tutorial

Supplemental Classes 32

 # Addition−Classes
 Class MovementLog
 MovementLog instproc move {x y} {
 # movement logging
 next
 }
 Class MovementTest
 MovementTest instproc move {x y} {
 # movement testing
 next
 }

An agent class is defined, which allows agents to move around. Some of the agents may need logging of the
movements, some need a testing of the movements, and some both (perhaps only for a while). These
functionalities are achieved through the additional classes, which we will apply through per−object mixins.

Before we can use the per−object mix−ins on a particular object, we must register the mixins on it with the
mixin instance method. It has the syntax:

 objName mixin mixinList

For example we may create two interactive agents, where one is logged and one is tested:

 InteractiveAgent i1; InteractiveAgent i2
 i1 mixin MovementLog
 i2 mixin MovementTest

At arbitrary times the mixins can be changed dynamically. For example i2's movements can also be logged:

 i2 mixin MovementTest MovementLog

Figure 6: Per−Object Mix−ins: Next−Path for the Example

The mixin option of the info instance method allows us to introspect the per−object mix−ins. It has the
syntax:

XOTcl − Tutorial

Supplemental Classes 33

 objName info mixins ?class?

It returns the list of all mix−ins of the object, if class is not specified, otherwise it returns 1, if class is a
mixin of the object, or 0 if not.

Note, that the constructors (init methods) of per−object mixins (and per−class mixins) are only called, if the
mixin is registered already during object initialization (when init is called). For per−object mixins, one can
achieve the initialization of a mixin via an idiom like

Object o −mixin M −init

that registers the mixin before init is called. When a mixin is registered after object creation and it needs
initializations, it is neccessary to define special methods for this. Note, that the behavior described here is
introdoced in version 0.84 to ensure consistent behavior of intrinsic classes, per−object and per−class mixins,
and to achieve predictable behavior for dynamic registration for all kind of mixins, and as well during
recreations of objects having mixins registered. Older versions used heuristics for the initialisation of
per−object mixins.

Per−Class Mixins

Per−class mixins are exactly identical in their behavior to per−object mixins, but they operate on classes. Thus
they are the class−specific variant of the per−object mixins, like instprocs are a class−specific variant of
procs. Therefore, in the language the per−class mixins are called instmixins.

In general a per−class mixin is a class which is mixed into the precedence order of all instances of the class
and all its subclasses it is registered for. It is also searched before the object's class itself is searched, but after
per−object mixins.

Per−class mixins are linearized into the precedence order in the same as all other classes. I.e. from the full list
of per−object mixins, per−class mixins, and intrinsic classes (and all the superclasses of all these classes)
always the last occurrence is used.

From the point of view of language expressibility instmixins are not required, because they cannot express
anything that per−object mixins cannot express already (like procs can express any instproc feature). We can
simply register the per−object mixin in the constructor of the class.

But there at least the following reasons for instmixins as an additional language construct:

we can at runtime determine with info mixin and info instmixin whether it is a class− or
object−specific mixin. Thus we get a better structuring at runtime.

1.

We have not to 'pollute' the constructors with per−class mixin registrations. Therefore, the
constructors get more understandable.

2.

If it is required to add (and remove) dynamically interceptors to a set of objects, which are instances
of a certain type, per−class mixins are much easier to handle (e.g. add an instmixin to Object to
intercept e.g. all calls to certain predefined methods).

3.

The language is more 'symmetrical', since any object−specific feature in XOTcl has a class−specific
variant.

4.

The mix−ins methods of per−class mixins extend the next−path of shadowed methods in the same way as
per−object mixin methods. Before we can use a per−class mix−in on a particular class, we must register the
mixin on it with the instmixin instance method. It has the syntax:

XOTcl − Tutorial

Per−Class Mixins 34

ClassName instmixin mixinList

Now consider that in the given per−object mixin example all interactive agents should be tested. We could
either build a subclass TestedInteractiveAgent or register the per−object mixin in the constructor of
the interactive agent class. The subclass solution leads to the same combinatorial explosion of intersection
classes as discussed in the previous section, if more supplemental classes are added. The per−object mixin
solution pollutes the constructor and does not prevail the structural semantics that the 'tested' property belongs
to the interactive agent class at runtime

Here, we can use a per−class mixin:

 Class Agent
 Agent instproc move {x y} {# do the movement}
 Class InteractiveAgent −superclass Agent
 Class MovementTest
 MovementTest instproc move {x y} {
 # movement testing
 next
 }

 # now register the instmixin
 InteractiveAgent instmixin MovementTest

The per−class mixin now operates on all interactive agent including the instances of subclasses. E.g. for
interactive agents i1 and i2 we automatically have movement testing. i2 is also logged, since it has the
logging class as object−specific mixin:

 InteractiveAgent i1
 InteractiveAgent i2 −mixin MovementLog

 i1 move 3 4
 i2 move 1 2

At arbitrary times the instmixins can be changed dynamically.

The instmixin option of the class info instance method allows us to introspect the per−class mixins. It
has the syntax:

 ClassName info instmixins ?class?

It returns the list of all instmixins of the the class, if class is not specified, otherwise it returns 1, if class
is a mixin of the object, or 0 if not.

Callstack Information

Since the presented interceptors are normal XOTcl instprocs they can access all XOTcl introspection abilities
introduced so far. In instprocs all recent information is accessible within their scope. But the interceptors are
mechanisms, which cover more then their sole scope. The meaningful usage of the meta−programming
abilities often requires to go further and to get information from the caller's and the callee's scope (e.g for
delegation decisions). Therefore, we introduced rich callstack informations for the interceptors. Note, that
these are also available for ordinary methods, but the "called..." info options return empty strings.

XOTcl − Tutorial

 Callstack Information 35

All callstack information are packed compactly into the self primitive as additional options. Note, before
XOTcl version 0.84 these were implememted as a part of the info method. They are part of the self
command for conceptual integrity: introspection options in info can be expected to produce the same result,
when they are not explicitly changed. In contrast, all information provided by self are callstack−dependent.

The additional Callstack Information Options in self

self calledproc Returns the name of the proc which was invoked in the original call.

self calledclass
Returns the name of the class which presumably (if no dynamic class change
occurs afterwards) is invoked in the original call.

self
callingclass

Returns the name of the class from which the call was invoked (if one exists,
otherwise an empty string).

self callingproc
Returns the name of the proc from which the call was invoked (if one exists,
otherwise an empty string).

self
callingobject

Returns the name of the object from which the call was invoked (if one exists,
otherwise an empty string).

self filterreg
In a filter: returns the name of the object/class on which the filter is registered.
Returns either 'objName filter filterName' or 'className instfilter filterName'.

self next
Return the "next" method on the path as a string, i.e. the method which will be
called by [next].

Note, that three options with the prefix calling represent the values of self, self proc, and self
class in the scope where the original call was invoked. In the following section we will show a simple
program in which all of the info options have different values.

Filter Callstack Information Example

Now we discuss a simple example that shows that all filter introspection options may have different values:

 Class InfoTrace
 InfoTrace instproc infoTraceFilter args {
 puts "SELF: [self]"
 puts "SELF PROC: [self proc]"
 puts "SELF CLASS: [self class]"
 puts "INFO CLASS: [my info class]"
 puts "CALLED PROC: [self calledproc]"
 puts "CALLING PROC: [self callingproc]"
 puts "CALLING OBJECT: [self callingobject]"
 puts "CALLING CLASS: [self callingclass]"
 puts "REGISTRATION CLASS: [self filterreg]"
 next
 }

 Class CallingObjectsClass
 CallingObjectsClass callingObject

XOTcl − Tutorial

Filter Callstack Information Example 36

 Class FilterRegClass −superclass InfoTrace
 Class FilteredObjectsClass −superclass FilterRegClass
 FilteredObjectsClass filteredObject

 CallingObjectsClass instproc callingProc args {
 filteredObject set someVar 0
 }
 FilterRegClass instfilter infoTraceFilter

The invocation of callingObject callingProc produces the following output:

 SELF: ::filteredObject
 SELF PROC: infoTraceFilter
 SELF CLASS: ::InfoTrace
 INFO CLASS: ::FilteredObjectsClass
 CALLED PROC: set
 CALLING PROC: callingProc
 CALLING OBJECT: ::callingObject
 CALLING CLASS: ::CallingObjectsClass
 REGISTRATION CLASS: ::FilterRegClass instfilter infoTraceFilter

The filter reports for self the value filteredObject, since this is the object on which the set call is
invoked; infoTraceFilter is the method of the filter, and therefore, the actual proc, while the actual
class is InfoTrace, the filter's class. The class of the actual object is FilteredObjectsClass.

The called procedure is set. While the program stays in a XOTcl−instproc all calling−info−options are set,
the calling procedure is callingProc, the calling class is the class, where the method is defined (namely
CallingObjectsClass), and the object from which the call invoked is callingObject.

Since the filter's registration class differs from the class, where it is defined, the corresponding information is
still missing (in this example FilterRegClass).

XOTcl − Tutorial

Filter Callstack Information Example 37

Class Nesting and Dynamic Object
Aggregations
Most object−oriented analysis and design methods are based on the concepts of generalization and
aggregation. Generalization is achieved through class hierarchies and inheritance, while static aggregation is
provided through embedding. Since version 8.0 Tcl offers a namespace concept which can be used as a
mechanism to provide dynamic aggregations.

A namespace provides an encapsulation of variable and procedure names in order to prevent unwanted name
collisions with other system components. Each namespace has a unique identifier which becomes part of the
fully qualified variable and procedure names. Namespaces are therefore already object−based in the
terminology of Wegner. Otcl is object−oriented since it offers classes and class inheritance. Its objects are
also namespaces, but an object is more than only a namespace. Therefore, two incompatible namespace
concepts have existed in OTcl in parallel.

Extended OTcl combines the namespace concept of Tcl with the object concept of OTcl. Every object and
every class in XOTcl is implemented as a separate Tcl namespace. The biggest benefit of this design decision
aside from performance advantages is the ability to aggregate objects and nest classes. Contrary in OTcl every
object has a global identifier. Through the introspection abilities of namespaces nested classes are also
traceable at runtime and can be changed dynamically. In XOTcl objects are allowed to contain nested objects,
which are dynamically changeable aggregates of the containing object.

Nested Classes

The notation for nested classes follows the syntax of Tcl namespaces by using ``::'' as a delimiter. For example
the description of a oval carpet and a desk can nest inside of the OvalOffice class:

 Class OvalOffice
 # general carpet
 Class Carpet
 Class OvalOffice::Desk
 # special oval carpet − no name collision
 Class OvalOffice::Carpet −superclass ::Carpet

Nested classes can be used exactly like ordinary classes, a user can sub−class it, derive instances, etc. The
information about the nesting structure of classes is available through the info instance method:

 ClassName info classchildren
 ClassName info classparent

The classchildren option returns a list of children, if one or more exist, otherwise it returns an empty
string. classparent results in the name of the parent class, if the class is nested. Since nested classes are
realized through namespaces, all functionality offered by Tcl's namespace command is usable from XOTcl
as well.

Dynamic Object Aggregations

The nested classes only provide an aggregation of the descriptive not of the runtime properties of an object.
We have pointed out the difference of object and class in XOTcl. Because of the splitting of a class into class
and class−object it is possible to give each object its own namespace. The internal implementation of objects

XOTcl − Tutorial

Nested Classes 38

enable them to contain nested objects, which are aggregates of the containing object. In XOTcl these can be
changed dynamically and introspected through the language support of dynamic object aggregations
[Neumann and Zdun 2000b]. Suppose an object of the class Agent should aggregate some property objects
of an agent, such as head and body:

 ClassAgent
 Agent myAgent

 Class Agent::Head
 Class Agent::Body

 Agent::Head ::myAgent::myHead
 Agent::Body ::myAgent::myBody

Now the objects myHead and myBody are part of the myAgent object and they are accessible through a
qualification using ``::'' (or through Tcl's namespace command). But in the common case they will be
accessed, as introduced so far: the explicit full qualification is not necessary when such variables are being
accessed from within XOTcl methods, since the object changes to its namespace.

The information about the part−of relationship of objects can be obtained exactly the same way as for classes
through the info method interface:

 objName info children
 objName info parent

Relationship between Class Nesting and Object
Aggregation

The classes Head and Body are children of the Agent class. It is likely that all agents, interactive or not,
have properties for head and body. This implies a static or predetermined relationship between class nesting
and object aggregation. Such predetermination do not exist in XOTcl, but are simply build, when specifying
the relationship in the constructor, e.g.:

 Agent instproc init args {
 ::Agent::Head [self]::myHead
 ::Agent::Body [self]::myBody
 }

Now all agents derived from the class have the two property objects aggregated after creation. But still they
are changeable in a dynamical manner, e.g. with:

 Agent myAgent
 myAgent::myHead destroy

The agent turns into a headless agent. In companion of the introspection mechanisms such constructions could
be very useful. Suppose, that in the virtual world the agents heads may be slashed from their bodies. The
graphical system simply needs to ask with info children on the agent's object, whether it has a head or
not and can choose the appropriate graphical representation.

Note, that the not existing relationship means a great deal of freedom and dynamics, which goes together with
the ideas behind OTcl, e.g. like the renunciation of protection mechanisms. This policy in programming
language design means, on the one hand, ease of programming and more expressiveness, but, on the other
hand, it contains no protection against bad software architectures or programming style. We believe that no

XOTcl − Tutorial

 Relationship between Class Nesting and Object Aggregation 39

such mechanisms could hinder the programmer to do silly things, so our policy was, to give the programmer
rather more powerful constructs then to make decisions in his place.

Copy/Move

Often an object has to be copied/moved. This is a very useful functionality when XOTcl should be used as a
prototyping language. The XOTcl method move provides this functionality. Another common behavior is
implemented by the copy method which clones the actual object to a destination object. The two methods
have the syntax:

 objName move destination

 objName copy destination

Copy and move operations work with all object/class information, i.e., information on filters, mixins,
parameters, etc. are automatically copied. Copy and move are integrated with class nesting and object
aggregations. All copy/move operations are deep copy operations: all nested objects/classes are automatically
copied/moved, too. E.g. if we want to reuse an imperial march object of star wars for star wars 2, we can just
copy the object:

starWars::imperialMarch copy starWars2::imperialMarch

Assertions
In order to improve reliability and self documentation we added assertions to XOTcl. The implemented
assertions are modeled after the ``design by contract'' concept of Bertrand Meyer. In XOTcl assertions can be
specified in form of formal and informal pre− and post−conditions for each method. The conditions are
defined as a list of and−combined constraints. The formal conditions have the form of normal Tcl conditions,
while the informal conditions are defined as comments (specified with a starting ``#''). The lists containing the
pre− and post−conditions are appended to the method definition (see example below).

Since XOTcl offers per−object specialization it is desirable to specify conditions within objects as well (this is
different to the concept of Meyer). Furthermore there may be conditions which must be valid for the whole
class or object at any visible state (that means in every pre− and post−condition). These are called invariants
and may be defined with following syntax for class invariants:

 ClassName instinvar invariantList

or for objects invariants:

 objName invar invariantList

Logically all invariants are appended to the pre− and post−conditions with a logical ``and''. All assertions can
be introspected.

Since assertions are contracts they need not to be tested if one can be sure that the contracts are fulfilled by the
partners. But for example when a component has changed or a new one is developed the assertions could be
checked on demand. For this purpose the check method can be used either to test the pre− or the
post−conditions. The syntax is:

 objName check ?all? ?instinvar? ?invar? ?pre? ?post?

XOTcl − Tutorial

Copy/Move 40

Per default all options are turned off. check all turns all assertion options for an object on, an arbitrary list
(maybe empty) can be used for the selection of certain options. Assertion options are introspected by the
info check option. The following class is equipped with assertions:

 Class Sensor −parameter {{value 1}}
 Sensor instinvar {
 {[regexp {^[0−9]$} [my value]] == 1}
 }
 Sensor instproc incrValue {} {
 my incr value
 } {
 {# pre−condition:}
 {[my value] > 0}
 } {
 {# post−condition:}
 {[my value] > 1}
 }

The parameter instance method defines an instance variable value with value 1. The invariant expresses
the condition (using the Tcl command regexp), that the value must be a single decimal digit. The method
definition expresses the formal contract between the class and its clients that the method incrValue only
gets input−states in which the value of the variable value is positive. If this contract is fulfilled by the client,
the class commits itself to supply a post−condition where the variable's value is larger than 1. The formal
conditions are ordinary Tcl conditions. If checking is turned on for sensor s:

s check all

the pre−conditions and invariants are tested at the beginning and the post−condition and invariants are tested
at the end of the method execution automatically. A broken assertion, like calling incrValue 9 times
(would break the invariant of being a single digit) results in an error message.

In assertions we do not check methods that modify or introspect assertions. These are
check,info,proc,instproc,invar, and instinvar. The reason for this is that we want to be able to
recover a malicious action in a catch error handler, like:

...
if {[catch {my assertionBreakingAction} errMsg]} {
 puts "CATCHED ERROR: $errMsg"
 # remeber checking options, for turning them on later again
 set check [my info check]
 my check {}
 # recover from broken assertion
 ...
 # turning checking on again
 $fb check $check
}

XOTcl − Tutorial

Copy/Move 41

Meta−Data and Automatic
Documentation
To enhance the understandability and the consistency between documentation and program it is useful to have
a facility to make the documentation a part of the program. There are several kinds of meta−data which are
interesting for a class, e.g. the author, a description, the version, etc.

Older versions of XOTcl have contained a special metadata command metadata. This command is now
(from version 0.83) deprecated and replaced by an integrated solution with XOTcl's API documentation
functionality. The object @ is used for documentation and metadata issues. Per default it is not evaluated at all.
Everything that is send to @ is simply ignored. That way we do not waste memory/performance at runtime, if
we do not require to parse the metadata/documentation.

If we have to know the metadata/documentation, as for instance in the xoDoc component and the makeDoc
tool, that handle XOTcl's internal documentation, we have to re−define the documentation object.
Alternatively, we can partially parse the source code for @ commands.

With @ the metadata/documentation is handled by first class XOTcl objects. By defining alternate @
implementations − as in xoDoc/makeDoc − we can evaluate the metadata/documentation arbitrarily.
xoDoc/makeDoc are only an HTML backend, but the basic idea is to provide support for several other
usages as well (e.g. XML, RDF, online help, documentation of dynamic structures, etc).

The object@ handles comments via its unknown method. xoDoc adds the appropriate instprocs to t@ to
produce HTML output. The appropriate command is:

xotclsh src/lib/makeDoc.xotcl

The source of a documentation is structurally very similar to the XOTcl constructs being commented. E.g. one
can copy an instproc and add comments at the right places, like:

 Class C
 C instproc m {a1 a2} {
 return [expr {$a1+$a2}]
 }

can be commented as follows

 @ Class C { description { "my sample class"} }
 @ C instproc m {a1 "first number" a2 "second number"} {
 description "add two numbers"
 return "sum of a1 and a2"
 }

One can do essentially a copy+paste of the source and add the comments via attribute value pairs. Every basic
language construct can have a "description". If you want to include other properties to the description, you can
add them like:

 @ C instproc m {a1 "first number" a2 "second number"} {
 author "GN+UZ"

XOTcl − Tutorial

Copy/Move 42

 date "Feb 31"
 description "add two numbers"
 return "sum of a1 and a2"
 }

This way, author and date are added automatically to the generated HTML file. In addition, there is a @File
hook for a per file description, like:

@ @File {
 description {
 This is a file which provides a regression test
 for the features of the XOTcl − Language.
 }
}

Additional Functionalities

Abstract Classes

In XOTcl a class is defined abstract if at least one method of this class is abstract. The instance method
abstract defines an abstract method and specifies its interface. Direct calls to abstract methods produce an
error message. E.g. a Storage class provides an abstract interface for access to different storage forms:

 Class Storage
 Storage abstract instproc open {name}
 Storage abstract instproc store {key value}
 Storage abstract instproc list {}
 Storage abstract instproc fetch key
 Storage abstract instproc close {}
 Storage abstract instproc delete {k}

All kinds of storage have to implement every method from the interface. E.g. a GNU Database Access, a
relational database access, and several other storage forms may be derived by sub−classing (therefore, all
conform to the same storage access interface).

Parameter

Classes may be equipped with parameter definitions which are automatically created for the convenient
setting and querying of instance variables. Parameters may have a default value, e.g.:

 Class Car −parameter {
 owner
 {doors 4}
 }

Each instance of class Car gets two instance variables defined. owner has no default value, and doors
defaults to 4. E.g. the following defines a new person object with the two paramters set:

 Car mercedes

Additionally the parameter method automatically creates a new getter/setter instance method for each
parameter −− same named to the parameter, which queries the parameter if it no argument is given or sets the

XOTcl − Tutorial

Abstract Classes 43

parameter if with an given argument. E.g. a car with only two doors can be created by:

 Car porsche −doors 2

The owner of thefirst car is set by:

 mercedes owner Marion

and the doors of the first car can be queried (and printed to the screen) by:

 puts "The mercedes got [mercedes doors] doors and is owned by [mercedes owner]"

parameter are inherited by subclasses. The parameters specified in the class hierarchy are combined,
default values can be redefined. Example:

 Class Car −parameter {{doors 4} owner}
 Class SportsCar −superclass Car −parameter {{doors 2}}
 Class Limo −superclass Car
 Class Porsche −superclass SportsCar
 Class Mercedes −superclass Limo

 Porsche p1 −owner peter
 Mercedes m1 −owner marion
 puts "[p1 owner]'s [p1 info class] has [p1 doors] doors"
 puts "[m1 owner]'s [m1 info class] has [m1 doors] doors"

By default, the methods to access the parameter values are instcommands implemented in C. However, it is
possible to specify custom setter and getters that might perform additional tasks. There are two ways to
specify custom setter/getter methods for parameters:

(a) the custom setter/getter methods can be defined within the class hierarchy of the object, or•
(b) the custom getter/setter can be specified on a different object. The set and get calls are delegated
to that object, which might be e.g. a database instance.

•

In both cases when the custom getters and/or setter are defined they will be called automatically from the
standard setter/getter methods. In order to use approach (a) the parameter methods −getter and −setter can be
used to specify the custom getter and and setter methods:

 Class C −parameter {{a −setter myset −getter myget}}

The methods myset and myget are called like set with one or two arguments. They are responsible for setting
and retrieving the appropriate values. It is possible to specify any one of these parameter methods. In the
following example "c1 myset a 100" will be called by the first line to set the value of a, "c1 myget
a" will be called by the second line to obtain the value of a.

 C c1 −a 100
 c1 a

In order to use approach (b) a parameter method −access is used to specify an object responsible for
setting/getting the parameter's values. This has the advantage that the custom getter and setter methods can be
inherited from a separate class hierarchy, such they can used for any object without cluttering its interface.

In order to keep the parameter specification short the access object can contain instance variables setter or
getter, naming its the setter/getter methods. If these instance variables are not in the access object, "set" is

XOTcl − Tutorial

Abstract Classes 44

used per default for getter and setter. These default values can be still overridden by the parameter methods
−setter or −getter. Here is a simple example showing this mechanism.

 Object db
 db set setter myset
 db set getter myget
 db proc myset {o var value} { my set $var $value }
 db proc myget {o var} { my set $var }

 Class D −parameter {{x −access db}}
 D d1
 d1 x 100
 puts x=[d1 x],vars=[db info vars]

Note that myset and myget obtain the name of the object as well, such they can set theses instance variables in
the object if desired.

For further customization, the class Class::Parameters containing the described behavior can be as well
extended (and sub−classed). The basic idea is to make the parameter mechanism extensible in a similar way
as the extension mechanisms work for normal object−oriented methods. One can extend the predefined
Class::Parameters class with someInstproc and use later

 C c1 {{a −default 1 −someInstproc x} ...}

or subclcass it like:

 Class MyParameters −superclass Class::Parameters
 Class X −parameterclass MyParameters −parameters ...

Upon object initialization, the parameters are firstly evaluated for all mixins and then for the class hierarchy.
E.g. in the following example:

Class A −parameter {
 {pcm 1}
}

Class B −instmixin A −parameter {
 {cl 4}
}

B b

at first the mixin parameter 'pcm' is set, then the class parameter 'cl'. However, since parameters are applied
before the '−' methods, the per−object mixin parameter defaults in the following example are not set by the
standard initialization routine:

Class C −parameter {
 {pom 1}
}
B b −mixin C

If this parameter or any other parameter default, which is introduced later than the standard initialization
routine, is required, then we can evaluate the parameter defaults manually, like:

[B info parameterclass] searchDefaults b

XOTcl − Tutorial

Abstract Classes 45

This searches all default values for the object b which are defined on mixins or on the class hierarchy.

Checking Commands for being Objects, Classes, or
Meta−Classes

Since XOTcl is a hybrid language containing several Tcl commands, sometimes its necessary for applications
to distinguish between Tcl commands and object commands for XOTcl. method of the Object class looks
up an objName and returns 1 if it is an object and 0 if not:

 anyXOTclObject isobject objName

If one can be sure that a command represents an object, it might be unsure if the command is only an object or
also class or even meta−class. The two instance methods isClass and isMetaClass check in the same
manner, whether a class or meta−class is given (since ever XOTcl class is an object, they also return 0, when
objName is not an XOTcl object).

anyXOTclObject isclass objName
anyXOTclObject ismetaclass objName

Exit Handler

A task for a programming language, sometimes of similar importance as object creation, is the object
destruction. XOTcl ensures that all objects are destroyed and their destructors are invoked when XOTcl
applications terminate. For that reason objects and classes are destroyed in the order objects, classes,
meta−classes. Sometimes further destruction order is of importance. For these cases, the XOTcl language
provides an exit handler, which is a user−defined proc, which invokes user−defined exit handling just before
the destruction of objects, classes, meta−classes is invoked. For instance, the exit handler lets the user specify
objects which have to be destroyed before all other objects.

The exit handler is defined as a proc of Object, which is per default empty:

 ::xotcl::Object proc __exitHandler {} {
 # clients should append exit handlers to this proc body
 ;
 }

There are some procs of the Object class pre−defined, which let us specify an exit handler conveniently:

 Object setExitHandler body
 Object getExitHandler
 Object unsetExitHandler

setExitHandler lets us specify a proc body that actually contains the user−defined exit handling. E.g.

 Object setExitHandler {
 aObj destroy
 puts "existing"
 }

XOTcl − Tutorial

Checking Commands for being Objects, Classes, or Meta−Classes 46

destroys the object aObj before all other objects and prints the message existing to the screen. With
getExitHandler the exit handler can be introspected. E.g. if we just want to append the destruction of
object bObj to an existing exit handler, we use getExitHandler:

 Object setExitHandler "[Object getExitHandler]; bObj destroy"

unsetExitHandler deletetes the exit handler.

Automatic Name Creation

The XOTCL autoname instance method provides an simple way to take the task of automatically creating names
out of the responsibility of the programmer. The example below show how to create on each invocation of
method new an agent with a fresh name (prefixed with agent):

 Agent proc new args {
 eval my [my autoname agent] $args
 }

Autonames may have format strings as in the Tcl 'format' command. E.g.:

my autoname a%06d

produces a000000, a000001, a000002, ...

XOTcl − Tutorial

Automatic Name Creation 47

References

[Neumann and Zdun 1999a] G. Neumann and U. Zdun. Filters as a language support for design patterns in
object−oriented scripting languages. In Proceedings of COOTS'99, 5th Conference on Object−Oriented
Technologies and Systems, San Diego, May 1999.

[Neumann and Zdun 1999b] G. Neumann and U. Zdun. Implementing object−specific design patterns using
per−object mixins. In Proc. of NOSA`99, Second Nordic Workshop on Software Architecture, Ronneby,
Sweden, August 1999.

[Neumann and Zdun 1999c] G. Neumann and U. Zdun. Enhancing object−based system composition
through per−object mixins. In Proceedings of Asia−Pacific Software Engineering Conference (APSEC),
Takamatsu, Japan, December 1999.

[Neumann and Zdun 2000a] G. Neumann and U. Zdun. XOTCL, an object−oriented scripting language. In
Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas, February 2000.

[Neumann and Zdun 2000b] G. Neumann and U. Zdun. Towards the Usage of Dynamic Object Aggregations
as a Form of Composition In: Proceedings of Symposium of Applied Computing (SAC'00), Como, Italy, Mar
19−21, 2000.

[Ousterhout 1990] J. K. Ousterhout. Tcl: An embeddable command language. In Proc. of the 1990 Winter
USENIX Conference, January 1990.

[Ousterhout 1998] J. K. Ousterhout. Scripting: Higher Level Programming for the 21st Century, IEEE
Computer 31(3), March 1998.

[Wetherall and Lindblad 1995] D. Wetherall and C. J. Lindblad. Extending Tcl for Dynamic
Object−Oriented Programming. Proc. of the Tcl/Tk Workshop '95, July 1995.

XOTcl − Tutorial

Automatic Name Creation 48

